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ABSTRACT
This paper considers the problem of how to ef ciently allocate

transmission energy in a cooperative wireless communication sys-
tem with one source, one relay, and one destination. The relay
assists the source via an orthogonal amplify-and-forward protocol.
The channels are assumed to be at fading and the destination
combines the source and relay transmissions using either maximal
ratio combining (MRC) or equal gain combining (EGC).

We analyze the problem of minimizing average total (source plus
relay) transmit energy under a xed outage probability constraint.
We show that the choice of receiver diversity combining technique
affects both the optimum energy allocation and the overall energy
ef ciency of the cooperative communication system. Our results
show that the ratio of optimum relay to source transmission energy
tends to be greater for EGC than MRC. Our results also show
that, while cooperative transmission with MRC is always the most
ef cient strategy, cooperative transmission with EGC tends to be
more energy ef cient than direct transmission when the outage
probability constraint is small or when the relay experiences an
advantaged channel to the destination.

Index Terms— Cooperative systems, resource allocation

I. INTRODUCTION
Spatial diversity can be achieved in multiuser communication

systems through user cooperation where transmitters and/or re-
ceivers pool their antenna resources to form a “virtual antenna
array”. Transmit cooperation was rst proposed in [1] and has
since been shown to offer many of the bene ts of multi-antenna
transmission, e.g. increased rate and/or reduced outage probability,
to transmitters with single antennas [2]-[4].

Unlike a single transmitter employing a conventional antenna
array, cooperating transmitters each have their own local resources.
It was rst suggested in [1] that cooperation could lead to an
overall reduction in transmit energy and, consequently, increased
battery life for wireless transmitters. Recent results have shown this
prediction to be true even for simple cooperative protocols such
as amplify-and-forward [5]-[7] and decode-and-forward [8]-[10].
These results also demonstrated the somewhat surprising result that,
while knowledge of channel state information at the transmitters
(CSIT) is bene cial, it is not necessary to achieve signi cant
gains in energy ef ciency with respect to direct (non-cooperative)
transmission.

While recent work in this area has focused on the impact of
the cooperative protocol and CSIT, the impact of receiver diver-
sity combining on optimum energy allocation and overall energy
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ef ciency has not been investigated. In this paper, we analyze
how the receiver diversity combining technique affects both the
optimum energy allocation and the overall energy ef ciency of
amplify-and-forward cooperative transmission systems. We focus
on a comparison of maximal ratio combining (MRC) and equal
gain combining (EGC) for a system with at fading channels and
a xed outage probability constraint. We derive the optimum energy
allocation strategy for EGC and compare the energy ef ciency and
allocation to the MRC results derived in [7]. Our results show that,
unlike MRC, optimum cooperative transmission with EGC always
requires transmission by the relaying node. Numerical results for in-
dependent Rayleigh fading channels show that the ratio of optimum
relay to source transmission energy tends to be greater for EGC
than MRC. We also show that, while cooperative transmission with
MRC is always the most ef cient strategy, cooperative transmission
with EGC tends to be more energy ef cient than direct transmission
when the outage probability constraint is small or when the relay-
destination channel is advantaged.

II. SYSTEM MODEL AND COOPERATIVE PROTOCOL
We consider the cooperative transmission system shown in

Figure 1 where a source (S) communicates to a destination (D)
with potential assistance from a single relay (R). All of the channels
in Figure 1 are assumed to be frequency non-selective and the
channel magnitudes |gs|, |gr|, and |h| are assumed to be indepen-
dent Rayleigh distributed random variables. The channels are also
assumed to be quasi-static in the sense that the channel realizations
remain constant over the duration of a cooperative transmission
interval but are i.i.d. for different transmission intervals.

S

R

D

|gs|2 = Gs

|gr|2 = Gr

|h|2 = H

Fig. 1. Cooperative transmission system model.

The source is assumed to have a strict transmission delay
constraint in the sense that it must transmit a symbol or code-
word in each transmission interval. We assume that the relay
cooperates with the source through the half-duplex “amplify-and-
forward” (AF) protocol rst described in [11]. In the AF protocol,
the transmission interval is divided into two time-slots of equal
duration. In the rst timeslot, the source transmits the symbol (or
codeword) x. This transmission is received by the destination and
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the relay through channels gs and h, respectively. We assume that
the receivers know the appropriate channel phases and correct the
received phase prior to subsequent processing or retransmission.
The destination and relay observations in the rst timeslot can be
written in standard signal space notation as

yd1 = |gs|asx + wd1 (destination)

yr1 = |h|asx + wr1 (relay)

where as is the amplitude of the source’s transmission and wd1 and
wr1 are zero-mean unit-variance independent complex Gaussian
random vectors resulting from additive white Gaussian noise at the
input of the destination and relay receivers, respectively.

In the second timeslot, the relay retransmits the phase corrected
signal that it observed in the rst timeslot and this signal is received
by the destination through channel gr. The destination’s observation
in the second timeslot can be written as

yd2 = |gr|aryr1 + wd2 = |gr|ar|h|asx + |gr|arwr1 + wd2

where ar is the amplitude of the relay’s transmission and wd2

denotes the receiver noise at the destination in the second timeslot.

III. SNR ANALYSIS
The SNR analysis in this section follows the approach developed

in [7]. To isolate the effect of the receiver diversity combining
technique, we assume that the source and the relay have access
to the channel amplitudes and are able to dynamically allocate
their transmission energies according to the instantaneous channel
amplitudes1 in each transmission interval.

When the destination has full access to the channel state infor-
mation (CSI) and transmit energies, MRC can be applied to the
relevant source/relay observations in both timeslots to maximize
the SNR. The resulting instantaneous SNR at the destination, after
MRC, can be expressed as [7]

SNRmrc = GsEs +
HEsGrEr

1 +HEs +GrEr
(1)

where Es = a2sE[xHx] is the source transmission energy and Er =
a2r(HEs + 1) is the relay transmission energy. Notice that the rst
part of (1) is the SNR of direct transmission.

When CSI is not available at the destination, MRC cannot be
used. One approach in this scenario is to combine the observations
with equal gain, i.e. EGC. The resulting instantaneous SNR at the
destination, after EGC, can be expressed as

SNRegc =
GsEs

2
+
EsGrEr(H− Gs

2
)+2Es(GrGsErHψ)1/2

2ψ +GrEr
, (2)

where ψ = HEs + 1. The following sections analyze optimum
energy allocation strategies and energy ef ciency of the two-source
cooperative transmission system based on (1) and (2).

IV. OPTIMUM ENERGY ALLOCATION STRATEGIES
The performance measure that we consider is outage probability,

de ned as the probability that the SNR at the destination falls
below a threshold ρ, i.e. p := Prob[outage] = Prob[SNR < ρ].
The following sections analyze the problem of minimizing average
total transmit energy under a xed outage probability constraint for
a destination using EGC or MRC.

1These channel amplitudes could, for instance, be provided through
separate low-rate feedback channels.

IV-A. Equal Gain Combining

Using the approach in [7], we rst consider the case p = 0. In
this case, minimizing the instantaneous total energy is equivalent
to minimizing the average total energy. The relay node energy Er
can be written as a function of ρ and Es by solving (2) for Er when
SNRegc = ρ. The solution yields two roots for Er. The correct root
yields Er = 0 when Es = 2ρ

Gs
and can be written as

Er =
(HEs+1)(GsHE2

s+2ρHEs+GsEsρ−2ρ2)
Gr(ρ−HEs)2

− 2Es(HEs+1)[GsHρ(2HEs+GsEs−2ρ)]1/2
Gr(ρ−HEs)2

. (3)

The admissible range of instantaneous energy allocations that
satisfy SNRegc = ρ can be described as the region in R

2 where
Er ≥ 0 and 2ρ

2H+Gs
≤ Es ≤ 2ρ

Gs
. The case Er = 0 establishes

the upper limit on the interval of admissible solutions for Es. The
lower limit on the interval is established by the requirement for
total energy to be a real-valued quantity. The square root in the
numerator of (3) reveals that Er ∈ R only if Es ≥ 2ρ

2H+Gs
.

Denote the admissible range of Es as A. Given ρ and the squared
channel amplitudes Gs,Gr , and H , (3) implies that Er is dependent
on Es. Hence, the total energy Eegc is dependent on Es and the
instantaneous total energy minimization problem can be stated as

E∗egc = min
Es∈A

Eegc. (4)

It can be shown that an explicit analytical solution to (4) requires
computing the roots of a quartic polynomial. Numerical solutions
to (4), however, are aided by the following result2.
Proposition 1: Total energy Eegc is a convex function of Es onA.
Proposition 1 implies that standard numerical convex optimiza-

tion methods can be used to nd the unique solution to (4).
Denote E∗s as the value of Es that attains the minimum in (4)

and note that E∗r is implied by (3). The following proposition shows
that the relay should always transmit, i.e. E∗r > 0 for all channel
states, when the destination uses EGC. This is in contrast to the
result in [7] showing that direct transmission (E∗r = 0) is optimum
for certain channel states when the destination uses MRC.
Proposition 2: E∗r > 0 for all values of Gs, Gr , H , ρ when the

destination uses EGC combining.
We now consider the optimum energy allocation strategy for the

case when p > 0. Note that the random nature of the channel state
implies that E∗egc is random. We denote the cdf of E∗egc satisfying
SNRegc = ρ as FE∗egc(x) := Prob[E∗egc ≤ x]. Let t denote the
value at which FE∗egc(t) = 1 − p. Given the current channel state,
solve for the optimum transmission energies E∗s and E∗r that satisfy
SNRegc = ρ via (2), (3), and (4). Note that the resulting minimum
instantaneous total energy E∗egc will exceed the threshold t with
probability p. Since outage events are permitted with probability p,
the strategy that minimizes average total transmission energy is to
not transmit if E∗egc > t. If E∗egc ≤ t, transmission occurs such that
SNRegc = ρ with the optimum energies E∗s and E∗r . We note that
this is an opportunistic transmission strategy where the source and
relay avoid transmission (and cause an outage) in cases when the
channel state is unfavorable. The outage probability requirement is
satis ed under this strategy since the SNR at the destination will
be equal to ρ with probability 1− p and equal to zero otherwise.

2Proofs of Propositions I and II are given in the Appendices.
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IV-B. Maximal Ratio Combining
Optimum energy allocation for the two-source, one-destination

scenario with MRC was analyzed in [7]. This section summarizes
the main results to facilitate a comparison with EGC in Section V.

For the case when p = 0, it was shown in [7] that the source
should use direct transmission, i.e. E∗r = 0 and E∗s = ρ

Gs
, when

the channel state satis es Gr
Gs
≤ 1 + Gs

Hρ
. When the channel state

does not satisfy this condition, cooperative transmission is more
energy ef cient than direct transmission. The source energy E∗s
that minimizes Emrc while satisfying SNRmrc = ρ is

E∗s =
ρ

H + Gs
+

(ρH)1/2(Gs + (1 + ρ)H)1/2

(H + Gs) (H(Gr −Gs) + GsGr)1/2
. (5)

The optimum relay energy E∗r is implied through (1) and (5) given
SNRmrc = ρ. The minimum total transmission energy is then
E∗mrc = E∗s + E∗r .

The optimum energy allocation strategy for the case p > 0
follows the EGC case, replacing E∗egc with E∗mrc, and noting that
the relay does not transmit when Gr

Gs
< 1 + Gs

Hρ
.

V. NUMERICAL EXAMPLES
This section presents numerical examples demonstrating the

impact of receiver diversity combining on optimum cooperative
energy allocation and energy ef ciency for the case when the
channels are Rayleigh fading and independent. Denote μr , μs,
and μH as the mean of the exponential random variables Gr , Gs,
and H . All of the results in this section assume μH = 100, and
ρ = 10dB. Figures 2 and 3 consider three separate cases: (i) when
the relay has a statistically advantaged channel to the destination,
i.e. μr = 100 and μs = 10; (ii) when the source and relay face
statistically symmetric Rayleigh fading channels to the destination,
i.e. μr = μs = 10; and (iii) when the relay has a statistically
disadvantaged channel to the destination, i.e. μr = 1 and μs = 10.

Figure 2 shows the average minimum total transmit energies
E[E∗mrc] and E[E∗egc] needed to satisfy the outage probability tar-
get p for the optimum energy allocation strategies developed in
Section IV. Direct transmission results (where E∗s = ρ

Gs
) are

also included for comparison. These results show that the average
total transmit energy decreases for both MRC and EGC as the
relay channel becomes more advantaged and as p → 1. As
expected, MRC is more energy ef cient than EGC. The energy
gap between MRC and EGC grows as the relay channel becomes
less advantaged, implying that knowledge of the channel state at
the destination is more critical when the relay does not have a
clearly advantaged channel. Cooperative transmission with MRC
or EGC achieves a xed outage probability with less average total
energy than direct transmission in most cases, especially for p →
0. Direct transmission outperforms cooperative transmission with
EGC, however, when the relay’s channel is statistically symmetric
or disadvantaged and p→ 1.

Figure 3 shows the energy ratio 10 log10
E[E∗s ]
E[E∗r ] as a function of

p. These results show that the energy ratio tends to be smaller
for EGC than MRC, implying that the relay assumes a larger role
in cooperative communication systems where the destination does
not have reliable CSI and uses EGC. As p → 1, the relay tends
to transmit with less relative energy for both MRC and EGC. For
p → 0, the relay tends to take on a larger fraction of the average
total energy burden. The exception to both of these trends occurs
when the relay has an advantaged channel to the destination. In

this case, the results in Figure 2 show that both the source and the
relay bene t from the advantaged relay channel. The relay, however,
tends to experience a greater reduction in optimum transmit energy
than the source due to its advantaged channel to the destination.
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Fig. 2. Average minimum total transmission energy vs. outage prob-
ability p. Direct transmission results are included for comparison.
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Fig. 3. Optimum average source to relay energy allocation ratio
vs. outage probability p.

VI. CONCLUSIONS
This paper examines the impact of receiver diversity combining

on optimum energy allocation and energy ef ciency of a wireless
communication system with one source, one relay, and one destina-
tion using the amplify-and-forward protocol. The source is required
to satisfy an outage probability constraint and both the source
and relay are assumed to transmit with knowledge of the channel
amplitudes. We derive the optimum energy allocation strategy for

III ­ 495



EGC and compare the energy ef ciency and allocation to the
MRC results derived in [7]. We show that, unlike MRC, optimum
cooperative transmission with EGC always requires transmission
by the relaying node. Numerical results for independent Rayleigh
fading channels show that the ratio of optimum relay to source
transmission energy tends to be greater for EGC than MRC. Our
results also show that, while cooperative transmission with MRC
is always the most ef cient strategy, cooperative transmission with
EGC tends to be more energy ef cient than direct transmission
when the outage probability constraint is small or when the relay
experiences an advantaged channel to the destination.

APPENDIX I: PROOF OF PROPOSITION 1

To prove Eegc is convex, and hence has a unique minimum on
A, we will show that

∂2Eegc

∂E2s
=

Hρ f(y)

2Gr(HEs − ρ)4(GsHρ(2HEs + GsEs − 2ρ))
3
2
≥ 0. (6)

The function

f(y) =
(y − ρGs)

4 r(y)

(2H +Gs)2ρ3G2s
, (7)

where y :=
p
GsHρ(2HEs +GsEs − 2ρ). Note that Hρ ≥ 0 and

the denominator of (6) is nonnegative on A. Hence, the condition
∂2Eegc

∂E2
s
≥ 0 on A ⇔ f(y) ≥ 0 on C, where C = [0, 2ρH ]. The

function r(y) can be written as

r(y) = y4 + 4Gsρy
3 − (12ρ2GsH + 3ρG2s + 6ρGsH)y2

+ (16ρ3H2Gs + 8ρ2HG2s + 16ρ2H2Gs)y
+ 4G2sH

2ρ4 + 2G3sHρ
3 + 4H2G2sρ

3.
(8)

Note that (y−ρGs)
4

(2H+Gs)2ρ3G2
s
≥ 0. Hence, the condition ∂2Eegc

∂E2
s
≥ 0

on A ⇔ r(y) ≥ 0 on C. We consider the behavior of r(y) in two
separate cases: Gs ≤ 4ρH and Gs > 4ρH .
Claim 1: r(y) ≥ 0 on C when Gs ≤ 4ρH .
Proof: Observe that r(0) = 4G2sH

2ρ4 + 2G3sHρ
3 +

4H2G2sρ
3 ≥ 0. To prove that r(y) ≥ 0 on C, it is only necessary

to prove that r(y) is non-decreasing on C. This will be shown by
proving that the minimum of s(y) := ∂r(y)

∂y
is nonnegative. We can

write

s(y) = 4y3 + 12Gsρy
2 − 2(12ρ2GsH + 3ρG2s + 6ρGsH)y

+16ρ3H2Gs + 8ρ2HG2s + 16ρ2H2Gs.

It can be shown that ∂2s(y)

∂y2 ≥ 0 on C. Hence, s(y) is convex
and has a unique minimum on C. The function s(y) achieves its
unique minimum at the point y∗ := arg min

y∈C
s(y). This point can

be written as

y∗ = −Gsρ+
p

4G2sρ2 + 8ρ2GsH + 4GsρH + 2G2sρ.

It can be shown that s(y∗) ≥ 0 when Gs ≤ 4ρH . Hence, ∂r(y)
∂y

≥ 0
for y ∈ C and r(y) is non-decreasing on C. Since r(0) ≥ 0, this
result implies that Eegc is convex on A when Gs ≤ 4ρH .
Claim 2: r(y) ≥ 0 on C when Gs > 4ρH .
Proof: Observe that r(0) ≥ 0 and r(2ρH) ≥ 0. It is suf ent

to show that r(y) is concave on C to imply that r(y) ≥ 0. It can
be shown that u(y) := ∂2r(y)

∂y2 is convex. It can also be shown that
u(0) ≤ 0 and u(2ρH) ≤ 0 when Gs > 4ρH . Hence, u(y) ≤ 0 on
C. This implies that r(y) is concave, which implies that r(y) ≥ 0
on C when Gs > 4ρH .

Claim 1 and Claim 2 imply that Eegc is convex on C.

APPENDIX II: PROOF OF PROPOSITION 2

Given the convexity of Eegc on A, we can determine whether the
unique minimum of Eegc on A occurs at the point Es = 2ρ

Gs
by

evaluating ∂Eegc

∂Es at this point. If ∂Eegc

∂Es > 0 at Es = 2ρ
Gs

, then the
minimum of Eegc on A must occur at Es <

2ρ
Gs

(corresponding to
E∗r > 0), otherwise the minimum occurs at Es = 2ρ

Gs
(correspond-

ing to E∗r = 0). It can be shown that

∂Eegc

∂Es

˛̨
˛
Es= 2ρ

Gs

= 1 > 0,

hence the unique minimum of Eegc on A must occur at Es <
2ρ
Gs

.
This implies that E∗r > 0 for all Gs, Gr, H , ρ.
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